

EARNED SCHEDULE

EMPIRICAL PREDICTIONS

For costs and time
at the end of the project
during project execution

The project - a drone swarm
ds

- Build 150 drones
- for a New Years swarm

The challenge: forecast time and cost

Question:

- How to forecast
- total time needed
- total expenditure expected
- during executing

Stop steering from looking back. Look forward

Earned Schedule : the past does feed into the future

Empirical predictions

- We assume we can make reasonable predictions of expected time and costs
- Planning is based on delivery of finished products
- We assume teams reach stable operations
- AKA stable productivity

Forecast the future

- Based on realized production we extrapolate
- Expected total duration
- Expected total cost

The example

An easy project:

- Assemble 2 drones per day
- 10 drones per week
- 150 drones in 15 weeks
- Cost per unit: € 10,-
- Total budgeted costs: € 1.500,-

Planning is straightforward: lineair

So we build and work and assemble

We now are in week 10

How did we deliver?

- We should have built 100 drones
- However: we only finished 80

Planned units vs units build

20 drones short

We did not deliver as much as planned

We have delay !

Earned schedule

- 80 drones were PLANNED to be delivered much earlier
- In week 8 that number should have been reached
- Not week 10

Equivalent production of 8 weeks in stead of 10

If we continu like this

Assuming every thing continues as it

 did so far- We will continue to be late
- And late
- And late
- Until we have delivered 150 drones

Prediction:
 week 19 to deliver 150 drones

- In week 19

Increased productivity needed

What if we speed up?

To original planned productivity

- We never make up for lost time

Still same 2 weeks delay

- We just not delay any further

To finish on original time - what to do?

Extreme productivity increase needed

- Week 10:
- 5 weeks left
- 80 delivered
- We need to deliver 70 drones more
- We need 14 drones per week
- From 8 drones per week
- Almost double productivity!

Produce 14 drones per week !!!!!

What about money?

Earned value - Actual costs

What did we actually spent in week 10 ? € 12.00,-

Planned vs Actual costs
Week 10

Overspent: € 200,-

Applying the same logic - where will we end

Continuing like this?

- Working until
- ALL units are produced
- AKA week 19
- Because we also delivered not enough drones
- Total predicted costs $€ 2.280$,- at week 19
- Overspending € 780,-

Overspent at week 15: already $€ 300$,-

Units is not

 money, money is not units
Now translating all to monetary values

The plan

- A unit produced is valued at its theoretically value
- A Drone produced equals a Earned Value of € 10,-

Status at week 10

So how does this look?

In week 10 we know what we have: a little late, a little too much

And we predict: to end in week 19 at $€ \mathbf{2 . 2 8 0}$,-

Concluding:

- If you can plan your project in Units_Delivered
- You can predict DURING project execution
- Improving your CONTROL
- And with that your project SUCCESS

