

EARNED SCHEDULE

1112032904

EMPIRICAL PREDICTIONS For costs and time at the end of the project during project execution

The project – a drone swarm

• Build 150 drones • for a New Years swarm

The challenge: forecast time and cost

Question:

- How to forecast
 - total time needed
 - total expenditure expected

during executing

Stop steering from looking back. Look forward

Earned Schedule : the past does feed into the future

Empirical predictions

- We assume we can make reasonable predictions of expected time and costs
- Planning is based on delivery of finished products
- We assume teams reach stable operations
 - AKA stable productivity

Forecast the future

- Based on realized production we extrapolate
 - Expected total duration
 - Expected total cost

The example

An easy project:

- Assemble 2 drones per day
- 10 drones per week
- 150 drones in 15 weeks
- Cost per unit: € 10,-
- Total budgeted costs: € 1.500,-

Planning is straightforward: lineair

\$

So we build and work and assemble

We now are in week 10

How did we deliver?

- We should have built 100 drones
- However: we only finished 80

Planned units vs units build

20 drones short

We did not deliver as much as planned

We have delay !

\$

Earned schedule

• 80 drones were PLANNED to be delivered much earlier

In week 8 that number should have been reached

• Not week 10

Equivalent production of 8 weeks in stead of 10

ement=a(b)};c.VERSION="3.3.7",c.TRANSITION_DURATION=150,c. if(d||(d=b.attr("href"),d=d&&d.replace(/.*(?=#[^\s]*\$)/,"", rdTarget:e latedTarget:b[0]}),g=a.Event("show.bs ctivate(b.closest("li"),c),this.a dTarget:e[0]})})}},c.prototype 🎊 .end().find('[data-toggle="tab'] lth,b.addClass("in")):b.removeC r("aria-expanded",!0),e&&e()}vä g.length&&h?g.one("bsTransition" b.Constructor=c,a.fn.tab.noCon# tab.data-api",'[data-toggle="ta his.each(function(){var d=a(thi (b,d){this.options=a.extend({};)).on("click.bs.affix.data-api" checkPosition()};c.VERSION="3.3.7", s.\$target.scrollTop(),f=this.\$elem l!=c?!(e+this.unpin<=f.top)&&"bottø d&&"bottom"},c.prototype.getPinned chis.\$target.scrollTop(),b=thig ut(a.proxy(this.checkPosi++

What does this predict?

func

If we continu like this

dz

Assuming every thing continues as it did so far

- We will continue to be late
 - And late
 - And late
- Until we have delivered 150 drones

Prediction: week 19 to deliver 150 drones

• In week 19

Increased productivity needed

What if we speed up?

To original planned productivity

• We never make up for lost time

Still same 2 weeks delay

• We just not delay any further

To finish on original time – what to do?

Extreme productivity increase needed

- Week 10:
 - 5 weeks left
- 80 delivered
 - We need to deliver 70 drones more
- We need 14 drones per week
 - From 8 drones per week
 - Almost double productivity!

Produce 14 drones per week !!!!!

What about money?

Earned value – Actual costs

What did we actually spent in week 10? € 12.00,-

Overspent: € 200,-

Applying the same logic - where will we end

\$

Continuing like this?

- Working until
- ALL units are produced
- AKA week 19
 - Because we also delivered not enough drones

- Total predicted costs € 2.280,- at week 19
 - Overspending € 780,-

Overspent at week 15: already € 300,-

dz

Units is not money, money is not units

Now translating all to monetary values

dz

The plan

- A unit produced is valued at its theoretically value
- A Drone produced equals a Earned Value of € 10,-

Status at week 10

So how does this look?

\$

In week 10 we know what we have: a little late, a little too much

And we predict: to end in week 19 at € 2.280,-

Concluding:

- If you can plan your project in Units_Delivered
- You can predict **DURING** project execution
- Improving your **CONTROL**
- And with that your project **SUCCESS**